產品分類
PRODUCT CATEGORY摘要:為了引起社會對新能源汽車火災問題和風險的廣泛關注,筆者作為一名基層的火災調查人員,結合火災的實際情況在簡要介紹新能源汽車概念和發展的基礎上,詳細闡述了以鋰電池為主的新能源汽車火災成因,系統地提出了關于防范新能源汽車火災的安全對策,以期為新能源汽車火災防范應對措施的制定提供借鑒和參考,對未來新能源汽車安全生產和使用具有重要意義。
關鍵詞:新能源汽車;火災調查;火災風險;鋰電池;安全對策
1新能源汽車的概念和火災風險
由于石油等資源的能源危機和傳統汽車工業帶來的環境污染問題,發展新能源汽車已成為全球主要經濟體共識。當前我國得益于現代高科技進步和新能源戰略布局,新能源汽車產業得到Q所未有的發展,擁有廣闊的市場前景和發展潛力[1]。
新能源汽車是指“采用新型動力系統,W全或者主要依靠新能源驅動的汽車,包括插電式混動力(含增程式)汽車、純電動汽車和燃料電池汽車等"[2]。一般來說,新能源汽車分為純電動汽車、混合動力電動汽車、燃氣汽車、燃燒電池電動汽車和生物燃燒汽車等類型[3]。通過查詢中國汽車協會相關統計數據,我國在2016—2018年間的新能源汽車銷量分別占全球汽車銷量的65.47%,49.03%,62.23%。2018年,我國新能源汽車的銷售量達到了125.6萬輛,既是全球大的新能源汽車消費國,又是全球大的新能源汽車制造國。伴隨著我國新能源汽車行業的迅猛發展,汽車動力電池也得到了Q所未有的增長和應用。從當前我國新能源汽車市場來看,動力電池從制作原料不同主要分為7種[4]:磷酸鐵鋰電池、錳酸鋰電池、鈦酸鋰電池、三元材料電池、多元復合電池、鎳氫電池、超級電容器。
通過《新能源汽車藍皮書:中國新能源汽車產業發展報告(2017)》中發布的相關數據整理而成的2017年我國動力電池總配套量表(見表1)可看出,鋰電池的應用領域廣,總配套量占據了市場動力電池總配套量的80%以上,是主要的新能源汽車動力電池。
表1 2017年我國動力電池總配套量
新能源汽車的普及給人們帶來的便利,但伴隨而來的動力電池(以鋰電池為主)引發的火災已成為產業關注的焦點和亟須正視的安全問題。在我國,根據不W全數據統計,新能源汽車起火引發的事故在2017—2018年超過60起,2019年超過70起[5-6],2020—2022年更是呈猛烈上升趨勢。
2新能源汽車火災成因及隱患分析
由于近些年來頻發的以鋰電池為主要動力的新能源汽車安全和火災事故,不制了新能源汽車產業的發展,而且危害了人們的生命財產安全,因此對新能源汽車及其動力鋰電池安全性問題的研究十分有必要。在進行新能源汽車火災風險隱患分析之前,對新能源汽車主體結構和鋰電池原理構造的了解和認識是重要前提和基礎。
新能源汽車主要指以鋰電池為動力源的純電動汽車,其主要由電源控制系統、電力驅動系統和輔助系統組成[7],具體見圖1。
鋰電池主要由正極、負極、隔膜和電解液(電解質和有機溶劑結合)組成,正負兩極浸潤在電解液中,Li+以電解質為介質從而在正負兩極之間運動,實現電池的充放電過程[8]。并且,為了避免正負極通過電解液發生短路問題,生產時需要用隔膜將鋰電池的正負兩極進行分隔。具體來說,鋰電池的工作原理見圖2[9],在充放電過程中,Li+在兩個正負電極之間往返嵌入和脫嵌;充電時,Li+從正極脫嵌,并經過非水電解質嵌入到負極中,而使負極處于富Li+狀態,放電時過程剛好相反。通過對鋰電池的原理和構造分析可以看出,鋰電池的高能量儲存與釋放都是在一個狹小的空間內完成。為了提高鋰電池的單位儲能效應,鋰電池研發和生產商們都會盡可能得壓縮鋰離子的傳送空間(即隔膜)。因此通常提高鋰離子電池效能的直接方法就是減少隔膜的厚度,從而使電池內Li+的狹小空間愈發狹小。但愈發薄的隔膜會增加正負兩極直接接觸從而造成短路的風險,從而更易造成短路引發火災甚至爆炸,這就是人們通常所說的“熱失控"。此外,鋰電池除正常充放電電化學反應之外,存在的一些副反應也會產熱[10]。
2.1汽車鋰電池火災危害性
雖然鋰電池具備一系列良好的使用性能和優勢,并且在新能源汽車行業中得到了廣泛的應用,但同時也存在燃燒和爆炸的風險。由鋰電池引發的汽車火災表現出顯著的氣體火特征,主要為C類預混火[11]。汽車鋰電池火災通常具有以下區別于一般火災的特點和危害。
1)燃燒速度快,鋰電池火災容易造成蔓延。
2)鋰電池燃燒爆炸會產生可燃有害氣體,毒性大。
3)燃燒爆炸產生的火焰噴射距離遠,常伴內溶物的飛出和濺射,加大了起火爆炸的危害度。
4)鋰電池的燃燒熱值大,滅火難,存在復燃風險。
5)汽車鋰電池起火,對周邊物體易造成較大的危害并存在爆炸風險。
2.2汽車鋰電池火災風險因素分析
新能源汽車上使用的鋰電池都是通過串并聯成組工作,如果單個電池組發生熱失控后,局部釋放產生的能量就會向周圍擴散傳播,可能引起周圍電池的熱失控,數千顆電芯間連鎖反應,容易造成電池組的全面起火爆炸,釋放出巨大的能量。因此在J端情況下,鋰電池的一個小故障就很有可能造成大災難。造成鋰電池熱失控的因素可分為內外部因素,內部因素主要有電池本身存在制造缺陷和工藝不足;外部因素主要有機械濫用、高溫熱沖擊、短路、過充電等[12]。更詳細來說,造成新能源汽車鋰電池起火燃燒爆炸的原因可分為4種[13]:電池過充電、外部短路、內部短路、機械碰撞。
總結來說,由鋰電池引發的汽車火災安全隱患問題主要原因就是鋰電池本身存在的產品質量問題和工藝缺陷。
3安全對策
面對著日益增長的新能源汽車火災事故,如何降低火災風險,提高新能源汽車安全使用率成為當下亟須解決的重要問題。而且,工業和信息化部、發展和改革委員會、科學技術部、財政部聯合發布的《促進汽車動力電池產業發展行動方案》里也提出:“大幅提升產品安全和質量水平"的基本原則,“產品設計和系統集成滿足功能安全要求,實現全生命周期的安全生產和使用"的主要目標,“提升產品質量安全水平"的重點任務。因此,筆者立足國內新能源汽車火災隱患現狀并結合國外應對新能源汽車消防安全的措施,提出解決我國新能源汽車火災風險的安全對策。
3.1方面
1)管理部門,出臺更為科學嚴格的鋰電池生產規范和安全標準。設定新能源汽車安全生產的準入門檻,提高安全生產標準,強化對新能源汽車從生產到使用再到報廢的閉環式管理。盡快出臺新能源汽車更為細致的規范和法律條文,讓企業、消費者、執法部門等做到有規可循、有法可依。
2)消防部門,制定科學有效的滅火方案。新能源汽車火災具有特殊危害性,有針對性地進行現場指揮和處理,科學開展滅火救援行動,并重點做好以下4個方面的工作:一是了解災情,規避風險;二是疏散人群,防止毒害;三是科學選擇滅火劑,防止復燃;四是做好善后工作,總結經驗。
3.2企業方面
新能源汽車的安全問題,預防為先。提升新能源汽車的鋰電池產品質量安全,是預防新能源汽車火災的基石。
1)設計階段,優化鋰電池設計,保障鋰電池產品質量。企業在設計階段應科學設計,在改善鋰電池材料和優化內部性能的同時,將安全、可靠、穩定的理念融入其中。
2)生產階段,嚴控鋰電池產品質量。企業是鋰電池和新能源汽車的一道“守護門",不可盲目追求利潤而忽視產品質量安全。
3)銷售階段,可與地方經銷商合作,做好對消費者關于新能源汽車安全使用的認知、宣傳和培訓。
4)售后階段,企業可與消費者、維護商家進行合作,定期為新能源汽車及其電池進行保養和維護,提醒消費者定期做安全檢查,保障新能源汽車安全使用。
3.3消費者方面
一是安全規范使用新能源汽車;二是注意車輛保養和日常維護;三是培養安全防范意識。
4、安科瑞AcrelCloud-9000充電站運營平臺
4.1平臺概述
安科瑞充電站運營平臺依托物聯網、云計算、互聯網、大數據、AI等技術,對充電站配電系統的運行、電能消耗、電能質量、充電安全和行為安全進行實時監控和預警,為充電站的可靠、安全、經濟運行提供保障,并及時切除安全隱患、避免電氣火災發生,從而保障人員的生命財產安全,打造“安全、高效、舒適、綠色"的“人—車—樁—電網—互聯網—多種增值業務"的智慧充電站,提升充電站的社會和經濟價值。
4.2適用場合
可廣泛應用于醫院、學校、酒店、體育場等公共建筑;商業廣場、產業園等綜合園區;企業、住宅小區等場所。
4.3系統結構
平臺采用分層分布式結構,主要由感知層、網絡層和平臺層三個部分組成,詳細拓撲結構如下:
現場設備層:連接于網絡中的各類傳感器,包括多功能電力儀表、汽車充電樁、電瓶車充電樁、電能質量分析儀表、電氣火災探測器、限流式保護器、煙霧傳感器、測溫裝置、智能插座、攝像頭等。
網絡通訊層:包含現場智能網關、網絡交換機等設備。智能網關主動采集現場設備層設備的數據,并可進行規約轉換,數據存儲,并通過網絡把數據上傳至搭建好的數據庫服務器,智能網關可在網絡故障時將數據存儲在本地,待網絡恢復時從中斷的位置繼續上傳數據,保證服務器端數據不丟失。
平臺管理層:包含應用服務器和數據服務器,完成對現場所有智能設備的數據交換,可在PC端或移動端實現實時監測充電站配電系統運行狀態、充電樁的工作狀態、充電過程及人員行為,并完成微信、支付寶在線支付等應用。
多功能電力儀表、汽車充電樁、電瓶車充電樁、電氣火災探測器、限流式保護器、智能插座可通過全網通4G通訊模組與平臺直接通訊。
電能質量分析儀表、煙霧傳感器和測溫裝置通過RS485,攝像頭通過RJ45與智能網關通訊,再由智能網關通訊通過4G統一與平臺通訊。
限流式保護器既可以通過4G連接平臺,也可以通過RS485連接網關。
平臺搭建在客戶自己配置的服務器上。搭建完成之后,客戶可以在任意能聯網的地方,通過有權限的賬號登陸網頁以及手機APP查看各處的運行情況。
4.4相關產品介紹
4.4.17KW交流充電樁AEV-AC007D
產品功能
1)智能監測:充電樁智能控制器對充電樁具備測量、控制與保護的功能,如運行狀態監測、故障狀態監測、充電計量與計費以及充電過程的聯動控制等。
2)智能計量:輸出配置智能電能表,進行充電計量,具備完善的通信功能,可將計量信息通過RS485分別上傳給充電樁智能控制器和網絡運營平臺。
3)云平臺:具備連接云平臺的功能,可以實現實時監控,財務報表分析等等。
4)保護功能:具備防雷保護、過載保護、短路保護,漏電保護和接地保護等功能。
5)材質可靠:保證長期使用并抵御復雜天氣環境。
6)適配車型:滿足國標充電接口,適配所有符合GB/T20234.2-2015國標的電動汽車,適應不同車型的不同功率。
7)資產安全:產品全部由中國平安保險承保,充分保障設備、車輛、人員的安全。
4.4.2直流充電樁系列
4.4.3電氣火災探測器ARCM300-Z
名稱 | 圖片 | 功能 |
電氣火災監控裝置 | 三相(I、U、Kw、Kvar、Kwh、Kvarh、Hz、COSφ),視在電能、四象限電能計算,單回路剩余電流監測,4路溫度監測,2路繼電器輸出,2路開關量輸入,事件記錄,內置時鐘,點陣式LCD顯示,1路獨立RS485/Modbus通訊,支持4G/NB等多種無線上傳方案,支持斷電報警上傳功能。 |
4.4.4限流式保護器ASCP200
產品功能:
1)短路保護:保護器實時監測用電線路電流,當線路發生短路故障時,能在150微秒內實現快速限流保護,并發出聲光報警信號;
2)過載保護:當線路電流過載且持續時間超過動作時間(3~60秒可設)時,保護器啟動限流保護,并發出聲光報警信號;
3)表內超溫保護:當保護器內部器件工作溫度過高時,保護器實施超溫限流保護,并發出聲光報警信號;
4)組網通訊:保護器具有1路RS485接口,可以將數據發送到后臺監控系統,實現遠程監控。
4.5平臺功能
4.5.1首頁
平臺首頁顯示充電站的位置及在線情況,統計充電站的充電數據
4.5.2實時監控
1)充電站監控
可以按站點名稱進行篩選,顯示站點詳情、充電槍列表、統計訂單信息、故障記錄,點擊某個充電槍編號后在進入充電槍監控頁面實時監測變壓器負荷(搭配ACM300T、ADW300),當負荷超過50%時,系統會限制新增開始充電的充電樁的功率,降為50%,當變壓器負荷超過80%時,系統將不允許新增充電樁開始充電,直到負荷下降為止。如圖所示:
統計當前充電站各充電樁回路的數據;通過卡片的形式展現充電樁的數據;顯示故障列表;如圖所示:
2)充電樁監控
顯示充電樁充電數據;顯示各回路的充電狀態;可以對充電中的回路進行手動終止;顯示訂單信息、故障信息;如圖所示:
3)設備監控
顯示限流式保護器的狀態,包括線路中的剩余電流、溫度及異常報警,如圖所示:
4.5.3故障管理
1)故障查詢
故障查詢中記錄了登錄用戶相關聯的所有故障信息。如圖所示:
2)故障派發
故障派發中記錄了當前待派發的故障信息。如圖所示:
3)故障處理
故障處理中記錄了當前待處理的故障信息。如圖所示:
4.5.4能耗分析
在能耗分析中,可查看Z定時段關聯站點和關聯樁的能耗信息并顯示對應的能耗趨勢圖。如圖所示:
4.5.5故障分析
在故障分析中,可查看相關時間內的故障數、故障狀態、故障類型、趨勢分析以及故障列表。如圖所示:
4.5.6財務報表
在財務報表中,可根據時間查看關聯站點的財務數據。如圖所示:
4.5.7收益查詢
在收益查詢中,可查看總的收益統計、收益變化曲線圖、支付占比餅圖以及實際收益報表。如圖所示:
5結束語
隨著我國對新能源汽車行業的戰略布局和人們日益增長的綠色出行需求,新能源汽車正朝著高質量、高效率和高產量的方向快速發展。新能源汽車的大規模普及對人們日常生活產生了巨大影響,伴隨而來的安全問題不容忽視。確保新能源汽車安全使用、防范新能源汽車火災風險將成為汽車行業和消防安全領域的一個重要話題和熱點。科學分析新能源汽車火災風險,加強新能源汽車火災安全對策分析,對促進新能源汽車高質量發展、保障人民生命和財產安全和構建新時代中國特色社會主義和諧社會有著重要意義。
參考文獻:
[1]歐陽明高.中國新能源汽車的研發及展望[J].科技導報,2016,34(6):13-20.
[2]中華人民共和國工業和信息化部.新能源汽車生產企業及產品準入管理規定[EB/OL].[2020-09-03].
[3]王嘉誠.中國新能源汽車產業發展分析[D].上海:上海師范大學,2012.
[4]彭華.中國新能源汽車產業發展及空間布局研究[D].長春:吉林大學,2019.
[5]張微.動力電池技術發展瓶頸分析及建議[J].汽車工程師,2020(12):15-17+22.
[6]阮藝亮.我國新能源汽車起火事故分析與對策[J].汽車工業研究,2019(3):31-35.
[7]劉子華.電動汽車鋰電池火災特性及滅火技術[J].電子技術與軟件工程,2020(1):68-69.
[9]黃彥瑜.鋰電池發展簡史[J].物理,2007(8):643-651.
[10]顧琮鈺,孫均利.三元鋰離子電池火災危險性分析[J].消防技術與產品信息,2018,31(7):11-14.
[11]王鵬.動力鋰電池火災起火特征初探[J].消防科學與技術,2019,38(4):599-601.
[12]龐敏,魯義,施式亮,等.鋰離子電池火災風險管控研究現狀分析[J].安全,2020,41(2):61-64+72.
[13]郭鵬宇,王智睿,胡新雨.磷酸鐵鋰電池預制艙施工和檢修過程的火災預防[J].電力安全技術,2020,22(5):65-69.
[14]黎濤.新能源汽車火災風險及安全對策分析
[15]安科瑞企業微電網設計與應用手冊2022.5版.